Hypersurfaces in ${\bf R}\sp n$ whose unit normal has small BMO norm
نویسندگان
چکیده
منابع مشابه
Linear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملTOWARD BEST ISOPERIMETRIC CONSTANTS FOR (H 1, BMO)-NORMAL CONFORMAL METRICS ON R n, n ≥ 3 †
Alice Chang’s Question: A very general question is to ask “What is the geometric content of Q-curvature?” For example, we know that one can associate the scalar curvature with the conformally invariant constant called the “Yamabe constant”. When this constant is positive, it describes the best constant (in a conformally invariant sense) of the Sobolev embedding of W 1,2 into L space; this in it...
متن کاملBEST ISOPERIMETRIC CONSTANTS FOR (H 1, BMO)-NORMAL CONFORMAL METRICS ON R n, n ≥ 3 †
Alice Chang’s Question: A very general question is to ask “What is the geometric content of Q-curvature?” For example, we know that one can associate the scalar curvature with the conformally invariant constant called the “Yamabe constant”. When this constant is positive, it describes the best constant (in a conformally invariant sense) of the Sobolev embedding of W 1,2 into L space; this in it...
متن کاملCharacterizing Normal Crossing Hypersurfaces
The objective of this article is to give an effective algebraic characterization of normal crossing hypersurfaces in complex manifolds. It is shown that a divisor (=hypersurface) has normal crossings if and only if it a free divisor, has a radical Jacobian ideal and a smooth normalization. Using K. Saito’s theory of free divisors, also a characterization in terms of logarithmic differential for...
متن کاملThe hypersurfaces with conformal normal Gauss map in H n + 1 and S n + 11 ∗ † ‡
In this paper we introduce the fourth fundamental form for the hypersurfaces in H and the space-like hypersurfaces in S 1 and discuss the conformality of the normal Gauss maps of the hypersurfaces in H and S 1 . Particularly, we discuss the surfaces with conformal normal Gauss maps in H and S 1 and prove a duality property. We give the Weierstrass representation formula for the space-like surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1991
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1991-1065093-4